Skip to main content
guest
Join
|
Help
|
Sign In
mjgds-math
Home
guest
|
Join
|
Help
|
Sign In
Wiki Home
Recent Changes
Pages and Files
Members
Home
6th Grade Math
Algebra
Geometry
Wiki Credits
Wiki Help
Wiki Netiquette
Wiki Survey
Quadratic Function
Edit
0
9
…
0
Tags
No tags
Notify
RSS
Backlinks
Source
Print
Export (PDF)
Quadratic Function
By Manya and Eliza
Example: x -6x+5=0
a=1 b=-6 c=5
Step 1: Factor the function
(x-1) (x-5)=0
x=1 x=5
Step 2: Find the axis of symmetry
:
Method 1:
x+x
=
1+5
=
6
=3
2 2 2
Axis=3
Method 2:
-b
=
-(-6)
=
6
= 3
2a 2(1) 2
Axis=3
Step 3: Find the vertex
Method 1: Substitute axis x in the function
x²-6x=5=0
(3)²-6(3)+5+y=-4
Vertex= (3, -4)
Method 2: Find the perfect square
x²-6x+5=0
Formula
x²+bx+
b
²
(x²-6x+9)+5-9+=0
(x-3)²-4=0
Convert it into this form: y= a (x-h)²+k
x=h
y=k
Vertex:=(x,y)=(h,k)
y=a(x-h)+k
y=1 (x-3)²+(-4)
Vertex: (3,-4)
Step 4: Find the y intercept
ax²+bx+c=0
C=y intercept
x²-6x+5=0
y intercept=5
Step 5: Find the Zeros
a(x-h)²+k=y
(x-3)²4=y
(x-3)²=4
x-3=+-√4
x-3=+-2
_
x=2+3=5
x=2-3=1
Javascript Required
You need to enable Javascript in your browser to edit pages.
help on how to format text
Turn off "Getting Started"
Home
...
Loading...
Quadratic Function
By Manya and Eliza
Example: x -6x+5=0
a=1 b=-6 c=5
Step 1: Factor the function
(x-1) (x-5)=0
x=1 x=5
Step 2: Find the axis of symmetry:
Method 1: x+x = 1+5 = 6 =3
2 2 2Axis=3
Method 2: -b = -(-6) =6 = 3
2a 2(1) 2
Axis=3
Step 3: Find the vertex
Method 1: Substitute axis x in the function
x²-6x=5=0
(3)²-6(3)+5+y=-4
Vertex= (3, -4)
Method 2: Find the perfect square
x²-6x+5=0
Formula x²+bx+b²
(x²-6x+9)+5-9+=0
(x-3)²-4=0
Convert it into this form: y= a (x-h)²+k
x=h
y=k
Vertex:=(x,y)=(h,k)
y=a(x-h)+k
y=1 (x-3)²+(-4)
Vertex: (3,-4)
Step 4: Find the y intercept
ax²+bx+c=0
C=y intercept
x²-6x+5=0
y intercept=5
Step 5: Find the Zeros
a(x-h)²+k=y
(x-3)²4=y
(x-3)²=4
x-3=+-√4
x-3=+-2
_
x=2+3=5
x=2-3=1